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Abstract—The stresses in a unidirectional fiber composite subjected to tension parallel to the fibers,
which has a single matrix crack bridged by fibers. are analyzed. Of interest is whether the enhanced
load sustained by the fibers causes them to fail. In particular. we attempt to gain insight into the
effect of the fiber-matrix interface on the stresses experienced by the fibers. As a preliminary
approach to this issue. the analogous two-dimensional problem is studied. To simulate the influence
of a real interface, we allow for interfacial slippage governed by a Coulomb friction law. Results
for the dependence of the fiber stress on the fiber volume fraction. the interface parameters, and the
load are presented.

INTRODUCTION

In ceramic-matrix composites, matrix cracking occurs to a greater or lesser extent. Under
a tensile load applied parallel to the fibers, it is possible for a single crack in the matrix to
traverse the entire specimen leaving the fibers intact. If the stresses sustained by these
bridging fibers are not too high, then the applied load can be raised to the point that matrix
cracks parallel to the first one can appear (Aveston et al., 1971). On the other hand, if the
stresses imposed on the fibers arce too intense, then the matrix crack may penctrate the fibers
causing composite failure. Henee, further matrix cracking and, consequently, the ultimate
strength are dependent on the state of stress prevailing once a single bridged matrix crack
has traversed the entire specimen. This suggests that a stress analysis of the configuration
shown in Fig. | would be quite useful,

However, the problem that ought to be solved is even more complicated than an initial
glance at Fig. 1 would suggest. Specifically, the character of the fiber-matrix interface plays
animportant role which must be incorporated. Itis widely believed, at least among materials
scientists dealing with ceramic-matrix composites, that matrix cracks are more likely to
propagate into the fiber in systems that are well bonded. On the other hand, when the fiber-
matrix interface is weak, matrix cracks tend to spare the fibers. A model which can quantify
this effect of an imperfectly bonded interface has been put forward in a recent paper by

MATRIX CRACK

Fig. 1. Schematic of fibers spanning a matrix crack.
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Dollar and Steif (1989), who focused on a single crack whose tips are impinging upon
interfaces that are capable of frictional slip. They found that the stress at the crack tip was
finite, and that the stress concentration was greater for interfaces that are *“stronger”, that
is, more resistant to slip. While the Coulomb friction model used by Dollar and Steif (1989)
is by no means the final word on descriptions of the interface, it is a tractable model
that may give realistic trends for the dependence of the stress concentration on interface
conditions.

In this paper we consider a problem which is the two-dimensional analog of the one
depicted in Fig. 1. An infinite, two-dimensional solid, composed of alternating layers of
fibers and matrix that are linked by Coulomb friction. is subjected to remote plane strain
tension. Along the x-axis the matrix material is cracked. One expects that slippage occurs
along the fiber—matrix interface in the vicinity of the matrix crack, and that remote from
the crack plane the constituents stick to one another (there being no shear stress to drive
slip). Below, we propose an approximate, yet accurate, means for solving this problem.
This two-dimensional problem is considered because it can give at least qualitative insight
into the potential effect of the interface on the fracture of the bridging fibers. Furthermore,
the approximate method proposed here to solve this problem may ultimately be gener-
alizable to the three-dimensional problem.

ANALYSIS

The two-dimensional problem considered here is shown schematically in Fig. 2. A
remotc stress o, is applied paralicl to the fibers. For simplicity, the lincar elastic fiber and
matrix are taken to have the sume isotropic moduli G and v. This seems justified for ceramic-
matrix composites, where the fiber and matrix typicaily have similar moduli. To complete
the description of this problem, we claborate upon the interface law. Relative motion at
the interface is modeled with Coulomb friction, an approach which has been used by the
authors in two recent papers (Dollar and Steif, 1988, 1989). According to this interface law,
cach point along the interface is cither sticking, slipping, or opening. For mathematical
convenience, let the interface lie along the y-uxis. Then, these three states are described as
follows:

stick condition ag<0, lti<pulgl, —=0, h=-—=0 (1a)

d dh
slipcondition ¢ <0, |t} = uls], sgn (iq) =sgn(r), h= e 0 (1b)

open condition o=1=0, h>0 {lc)

I |
™

—»] b je—

Fig. 2. Two-dimensional problem of frictionally constrained fibers spanning a matrix crack.
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with
=0, T=0,
9= lim [r(e, 5) —t(=¢,y)]
-

h= lim fu(e, y) —u(=e.5)).

In these equations o,, and o,, denote the usual Cartesian components of stress, v and v
denote the x- and y-components of displacement, respectively, and u is the friction
coefficient. In applying eqns (1). one must be careful to use the total stresses, including any
residual stresses. Thus, two parameters characterize each point on the interface : the residual
stress (always normal if arising from, say, differences in thermal expansion coefficient) and
the coefficient of friction. In the problem posed below, both quantities will be assumed to
be constant along the interfaces. In particular, we simulate a residual stress at the interface
by applying a uniform compressive stress a,. Note that this interface law assumes no
bonding or adhesion at the interface.

Symmetry of the problem shown in Fig. 2 dictates that the extent of slip is the same
for all fibers: however, it is dependent on the load in a manner which comes out of the
analysis. It is also useful at the outset to bear in mind that all fibers carry the same average
stress at the plane of the matrix crack, namely, o /V;. where ¥V = a/b is the fiber volume
fraction. While a finite element method could be used to solve this problem, as it takes
advantage of the symmetry inherent in the infinite array of fibers, the resolution of stresses
at the crack tip impinging upon the frictional interface may be unrcliable. Instead, a method
is offered here which is likely to be more accurate than would be a finite element method,
but which is still relatively tractable.

To see the motivation for this alternative method, consider the consequences of using
superposition and solving the equivalent problem of pressuring open the crack fuces between
the bridging fibers. Note further that this problem can be restated as one on a half-plane
(see Fig. 3); the surface of the half-planc is free of shear stress and there are alternating
regions of uniform pressure a.,, and zero normal displacement (where the fibers are). Note
that the periodicity implics that the pressure along, say, —b < x < —a is equilibrated by a
tension along —a < x < 0.

Our method of solution is based on the following assumption: the stress field in the
region where the matrix crack impinges upon the fiber that lics along —a < x < @ may be
calculated—with satisfactory accuracy—by considering only the surface loading along
—b < x < b. This loading of the half-plane, with the surface free of traction except along
—b < x < b, isequivalent to an infinite medium with two semi-infinite cracks, one extending
from — 0 < x < —a and one extending from a < x < oo, which are pressured open by o,
along —b < x < —aand a < x < b (see Fig. 4). We base the above assumption upon the
notion that the effects of any one of the self-equilibrating loadings of the boundary of

Fig. 3. Restatement of two-dimensional problem in terms of a half-plane.
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Fig. 4. Boundary value problem which mimics the infinite array of fibers spanning a matrix crack.

the half-plane (e.g., nh—a < x <nh+a, for n =0, £ 1, £2, +3....) decay quickly with
distance ; in particular, the stress contribution associated with cach self-equilibrating load-
ing decays as 1/r for a perfectly bonded interface. In essence, this approximation neglects
the effects of all but the loading closest to any particular fiber. Inaddition, the approximation
neglects the influence of slippage along interfaces other than those bounding the fiber in
question.

We offer further justification for this approach by applying it to the situation in which
no slip is permitted at the fiber-matrix interface (perfect bonding) ; then, the problem we
wish to solve is that of an infinite, periodic array of cracks, which has a closed form solution
(Tada ¢t al., 1973). Our approximate method yields the problem shown in Fig. 4, but with
no slippage at the interface. This also has a closed form solution which can be compared
directly with the exact solution for the periodic array.

The solutions for these two problems are conveniently expressed in terms of the
Muskhclishvili (1963) complex analytic functions ¢ and , which are related to the stress
and displacements according to

Grty =2 +) (20)

O, —a+2io, =20Z¢"+y’) (2b)

26(u+iv) = kp—z¢p’ —iff (2¢)

where = = x+iy. ( )’ denotes complex differentiation with respect to =, an overbar denotes

complex conjugation, and k = 3 —4v in plane strain.

For the problem depicted in Fig. 4, one can obtain the solution p—which we write as
¢, for this case of no interfacial slippage—by a standard method (conversion to a Hilbert
problem and integration of a Cauchy singular integral). ¢, is found to be

_ 1 R T
¢:.=~1’.—“~'{5nog[‘/‘ al= vt ",]+‘/”, ";}. 3)
m \/:Z—a‘+\/b'-a' J3-a

For this class of problems, the other potential, . is related to ¢, by

Yo = —zdq. CY)
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The exact solution for the periodic array of cracks (each of half-length ¢ = b—a) is
given by

sin =
26
¢’ = lo, —1}. )
. 4 RS . L RC
sin E-sm %

Various aspects of the two solutions just given may be compared. For example, the
respective stress intensity factors are

e b —a*
., o= 2 — . =2 .
Ka=0, [btanZ Ky =20, / = (6a.b)

where K and K,,, denote the exact (periodic cracks) and approximate (Fig. 4) stress
intensity factors, respectively. At worst. when b—a « a (isolated cracks or closely spaced
fibers). these solutions differ by 11%. When b > a {nearly impinging cracks or widely
spaced fibers), the stress intensity fuctors approach the same value

20 ,.b
K=" M

na

It is not surprising that our approximate method yiclds accurate results for widely |
spaced fibers ; in this limit the fibers that transmit the applicd stress across the matrix crack
planc do not see one another. However, it is remarkable how close the stress intensity
factors are for typically spaced fibers. For example, with a fiber volume fraction of 50%
(afb = 0.5), the stress intensity factors differ by 2.3%. The reasonable accuracy obtained
in applying this approximate method to the case of perfect bonding is taken as suflicient
justification for using this method when slippage occurs at the fiber-matrix interface. It
ought to be mentioned, however, that one should expect our method to be somewhat less
accurate for the case of slipping fibers, in which the rates of decay will be slower (see Dollar
and Steif, 1988).

Before we outline the solution method for the case of slippage at the interface, we
consider briefly the nature of the fields in the vicinity of the crack tips. The near-tip behavior
when a crack impinges upon a slipping interface was discussed in some detail in a previous
paper by the authors (Dollar and Steif, 1989); we found that the stress at the crack tip was
finite, That is, there are no admissible crack-tip eigenfunctions, satisfying the conditions of
traction-free crack faces and frictional slippage at the interface, which exhibit singular
stresses. The dominant eigenfunction is one involving piece-wise constant stresses, the only
non-zero stress component being the tensile stress 6, ahead of the crack tip. Our solution
method is such that this near-tip behavior can be simulated. [Actually, the additional
condition imposed in Dollar and Steif (1989) was that slippage was to occur such that the
crack opened ; for a closing crack, a singular compressive stress ahead of the crack tip is
possible.]

The solution method follows closely the method used in other papers focusing on the
effects of frictional slippage (Dollar and Steif, 1988, 1989). Slippage at the interface is
represented by a continuous distribution of dislocations. The total stresses are the sums of
the stresses associated with the perfectly bonded solution (¢,.0,) and the stresses associated
with the distributed dislocations. One obtains a singular integral equation for the dislocation
density by enforcing the friction condition (Ib) along the slip zone. The length of the slip
zone is unknown and is found as part of the solution.

To use superposition as indicated above, one must have, as the kernel solution, the
solution to the problem of a dislocation in an infinite medium which has two semi-infinite,
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traction-free cracks. The technique to find such a solution is given by Lo (1978) (among
others), who used distributed dislocations to represent the kinked part of a kinked crack.
For a dislocation with Burger’s vector b = b,j one finds this kernel solution to be given by

' =¢:+¢r (8a)
Y =y +yr (8b)
where
bz = Y= X (9a.b)
- -0 T~y (-"‘-0)
Dal(z20) = —AF(z.20)+ F(2 Z0) + (20 — 2V H(z. Z0)] + ‘—:3 (10)
'l’;t(;? ) = (5;((3‘:1))—¢k(5‘ :n)“zd’;(:v <o (l 1)
] — éf,(,:f")
Fzz) = ; ‘X(:) (12)
2(:"50)
(=~ ~
H(zz,) = 15-(7'\_3-7-‘9 (13)
Ulg
X(z) = \/:Z—a‘ (14)
__Gbh, |
ey )

This solutions appears to be quite similar to the kernel solution for a finite crack (sce
Lo, 1978). One important difference here is that the branch of the square root /z?—a?is
the one which has discontinuities along the branch cuts— 0 < x < —g and ¢ < x < w.
Here, the constant ¢ can be evaluated by noting that the function c/\ﬁz--a2 is the solution
to the problem of a flat, rigid, frictionless punch applied to the lower (or upper) half-plane.
It is obvious that a solution to the punch problem (with an arbitrary load) may be
superposed on the dislocation solution. Clearly, it is desired to have that dislocation solution
which involves zero net force transmitted across —a < x < a. Hence, ¢ must be zero.

To formulate an integral equation, we now assume that the interfuce remains closed
everywhere and that slip occurs along a single portion of each interface (x = +a,
— L < y < L), with the remainder of the interface being in a stick condition. {One must
determine a posteriori if, in fact, the interface remains closed ; this is donc by checking the
results to see whether o, < 0. For the results presented, including friction cocfficients up
to u = 0.3, the interface was found to remain closed. Furthermore, since the interfacial
compression increases with the applied load. it is suspected that the interface remains closed
for all levels of load. On the other hand, as found in Dollar and Steif (1989), there is
some opening at the interface for higher friction coefficients, provided the applied load is
sufticiently small.} Then, it is necessary to distribute dislocations (with Burger’s vector in
the y-direction) only along the slipped portions of the interface. The distribution of dis-
locations is chosen to satisfy the following integral equation which enforces the friction
condition g, = + yu|a..| along the slip zones:
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L
j by Ro(¥3. 30)+ R (3. o) +uR:(y. ¥yo)] dvo +f(y) = 0 (16)

0

where b(y) is the dislocation density, and the functions R, (the singular part), R;, R; and
fare given in the Appendix.

Of the various quantities which may be computed from the solution. the tensile stress
immediately ahead of the crack tips is the most important one considered here. This tensile
stress, (0,,)q,. can be obtained in two ways. First, it is readily shown that this stress is
related to the dislocation density as one approaches the crack tip from the slip zone
according to

E
(oj'y)lip = l_—'—VE b(O)' ( 1 7)

Alternatively, the stress at various points ahead of the crack tip can be computed from the
entire distribution of dislocations. followed by an extrapolation to the crack tip. The degree
to which these two methods yield the same number is a measure of the accuracy of the
numerical solution to (16). Generally, agreement to within a few percent was found.

The results to be presented will indicate how the tensile stress at the crack tips, and,
hence, the likelihood of fiber failure before multiple cracking can set in, depends on
conditions at the interface. In addition, we will present results for the extent of slip, the
crack-tip opening (maximum slippage at the interface), and the rate of load transfer from
the fiber to the matrix.

RESULTS

In this section we present results which indicate the dependence of quantities of interest
on the material parameters. It is simplest to consider first the limiting situation of a very
low concentration of fibers. In such circumstances, one can model the problem as a single
fiber being pulled out of a half-planc. This problem, shown schematically in Fig. S, is similar
to an carlier problem considered by the authors (Dollar and Steif, 1988) in which a fiber is
pulled out from (or pushed into) a half-plane by a uniform normal stress. (A by-product
of considering this limiting problem is the opportunity to contrast the two boundary
conditions of a uniform displacement and a uniform traction). With this limiting case, one
can sce the essential effect of the load and the friction coefficient. Later, when the full
problem is considered, the effect of nearby fibers will be evident.

When the interface is perfectly bonded, the solution to the fiber pull-out problem is
the negative of the solution for a rigid, flat, frictionless punch pressed into a half-plane.
Therefore, the solution, ¢,, is given by (Muskhelishvili, 1963)

Oy = 0, v = constant

FRICTIONAL
INTERFACES

Fig. 5. Pull-out problem which is equivalent to limiting case of b/a —» .
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oy = 32X0) (18)
where P is the load transmitted through the fiber and X(2) is defined by (14). As expected.
the stresses are square-root singular as the crack tip is approached. Once we allow frictional
slip to occur. however, the interface serves to “blunt™ the impinging matrix crack. To see
this effect, consider Fig. 6 in which the stress at the tip. normalized by the average fiber
load is plotted as a function of the fiber load. The dependence on the fiber load, insofar as
it is normalized by uo,, is typical of problems involving frictional interfaces. For loads that
are small compared with the nominal friction stress ue,. one, in some sense, recovers the
perfectly bonded case. As the applied stress increases relative to uo,. the blunting effect of
the interface increases.

[Actually. the perfectly bonded case is not precisely recovered for small loads. In that
limit, our problem becomes a small scale slipping problem (studied by Dollar and Steif,
1989). in which the crack tip in effect senses a remotely applied elastic singular field. As
shown by Dollar and Steif (1989). the tensile stress at the crack tip in the small scale slipping
limit is actually proportional to the residual stress o,. Since this is the case for arbitrarily
small applied loads. the corresponding stress concentration factor properly becomes infinite
in the limit of a vanishing small load.]

The dependence on u is not solely through the combination uo,. however. This depen-
dence was an important aspect of a recent theoretical study of the pull-out test by Dollar
and Steif (1988). They compared results based on the Coulomb friction interface model
with results based on a well-established approximate method of analysis. This method.
which can be used to compute the extent of slip, the relative displacement at the interface
and the load transter, rests on the assumption of a constant shear stress prevailing at the
interface. (For convenience, we refer to this method as the CSSA —the constant shear stress
approximation.) Comparisons were made to see whether it is sufficient to employ a CSSA
(in which pue, is taken to be the constant shear stress), even through the friction stress,
strictly speaking, varies point-wise according to the Coulomb friction luw. To the extent
that the Coulomb friction-based results are dependent only on the product po,, and not on
pand g, individually, the CSSA is adequate. In fact, the CSSA was found in some instances
to be adequate, particularly when the friction coefficient is small. Unfortunately, there
appears not be 4 CSSA to the stress concentration at the crack tip ; thus, no such comparison
is possible. In any event, a CSSA coul' not possibly predict the stress concentration
accurately since it clearly depends on p » .d o individually, and not just upon uo,.

Turning to Fig. 7, one can see the sup length (still for the case of widely spaced fibers).
Results obtained here are plotted as the solid lines; two other results are shown for

50

a0}
a0}

°np
P/2a
20 -
10 -
0.0 L i - 1 1 J
0.0 4.0 8.0 120 16.0 200 240
F/2a
)

Fig. 6. Tensile stress at crack tip as a function of pull-out load.
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Fig. 7. Slip length as a function of pull-out load. (——) Present problem of uniform applied
displacement ; (-~ -) uniform applicd traction; (- - -) constant shear stress approximation.

comparison. The dotted line is the prediction based on the CSSA, which is described in
more dctail below for the particular problem considered here. Clearly, there is some
discrepancy, particularly for low loads. With increasing loads, however, the CSSA may be
viewed as adequate. Also shown in Fig. 7 arce the results of a previous analysis of the pull-
out problem (Dollir and Stcif, 1988), in which a uniform normal tension was applicd to
the fiber (sce dashed curves). Again, there are discrepancies at low loads. Under a uniform
tension, slip does not initiate immediately because the shear stress is less than p times the
normal stress. Under a uniform displacement (the crack problem here), slippage occurs
immediately upon application of the load. However, the curves rapidly approach one
another as the load is increased. In fact, in the limit of a very large load, the two problems
become identical ; the tractions across the fiber (to which a uniform displacement is applied)
become uniform, as suggested by the stress concentration shown in Fig. 6. (The slight
discrepancies between the solid and dashed curves in Fig. 7 for large loads are associated
with slightly different numerical formulations.)

Figure 8 indicates the crack tip opening displacement. This opening corresponds to
the maximum amount of slip at the interface (as y — 0). As in Fig. 7, the solid lines are the
results of the calculations carried out here ; the dotted line is the CSSA and the dashed lines
are the results of the pull-out test with a uniform tension. The CSSA agrees reasonably well
with the present results, though it, of course, does not predict any dependence on u alone.
As mentioned above, interfacial slippage does not occur in the uniform tension pull-out
test until a finite load is applied. For higher loads there appears to be a constant discrepancy
between the present results and the uniform tension pull-out test.

We now allow the matrix crack to be spanned by a non-dilute concentration of fibers
(finite values of b/a). First, the dependence of the stress concentration on the load is shown
in Fig. 9 for various b/a (u = 0.3). As before, the stress concentration diminishes with the
dimensionless applied stress. To allow a proper comparison for a range of b/a, we have
defined the dimensionless stress to be the average stress transmitted by the fiber when the
remote load is applied, normalized by the nominal friction stress uo,. One can see that the
stress concentration increases with the fiber volume fraction, assuming a fixed amount of
load transmitted by the fiber.
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Fig. 9. Tensile stress at crack tip as a function of opening pressure.

The extent of slip is plotted in Fig. 10 as a function of the dimensionless load. As
indicated above, the slip length is one of several quantities that may be computed on the
basis of a CSSA. Let sio, be the constant shear stress acting across the interface. The slip
length is taken to be the distance over which all of the load in the fiber is transferred to the
matrix. This approximate slip length, Legss, which is readily determined to be

a ua, a

is plotted in Fig. 10 as the dotted line. As can be seen, the approximation may be satisfactory
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equation ; (~—~) constant shear stress approximation.

05
04r
<
03}
°
o L.
&k
>|=
+
R4
o 02F
o.l |
oo 1 1 1 1 ]
00 5.0 10.0 15.0 200 25.0
oxbk

K%

Fig. 11. Crack tip opening as a function of opening pressure. (——) Numerical solution to integral
cquation ; (—~-) constant shear stress approximation.

depending on the desired accuracy. Note that the limit of a dilute concentration of fibers

is obtained by fixing ¢ ,b/a and letting a/b — 0.

In Fig. 11 the crack tip opening is plotted as a function of the dimensionless load. For
comparison, the CSSA to the slippage at the interface is shown as the dotted lines. The

SAS 27:8-F
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Fig. 12. Average fiber stress as a function of distance away from matrix crack. (——) Numerical
solution to integral equation ; (- ~ =) perfectly bonded interface; (- - -) constant shear stress approxi-

mation.
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Fig. 13. Comparison of load transfer results for actual infinite array of fibers and for simulated fiber
intcraction.
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approximate slippage is readily derived by integrating the difference (across the interface)
in the longitudinal strain, the integration being from the matrix crack to the end of the slip
zone. The result is

Guessa I o, b( a)
o CSSA = T 1=, b
a(x+ )no bjla 16n poy a ! b @0

In particular, for a fiber volume fraction of 0.5 (b/a = 2). the CSSA given by (20) differs
from the numerical solution of the integral equation by up to 40%. at least for a friction
coefficient of 0.3. Note also that earlier work on the pull-out test would suggest that the
CSSA and numerical results based on a Coulomb friction interface deviate with increasing
friction coefficient. Although it must be borne in mind that the present analysis is approxi-
mate. particularly insofar as the configuration of Fig. 4 is analyzed. the results still suggest
that the CSSA be applied cautiously to computing the opening at the crack tip.

We now turn to the transfer of load from the fibers to the matrix, a crucial element in
many theories of composite strength. Consider Fig. 12, in which the average stress in the
fiber, normalized by the average stress at the matrix—crack plane. is plotted as a function
of distance from the matrix-crack plane. Different solid curves correspond to different
coefficients of friction (b/a is fixed at 2.0). The CSSA, which predicts lincar load transfer,
is plotted as the dotted line in Fig. 12. For comparison, the load transfer rate assuming
perfect bonding is also plotted (dashed line). As a previous study indicated (Dollar and
Steif, 1988}, load transfer with Coulomb friction is generally substantially slower than under
conditions of perfect bonding. [When a fiber is being pushed in Dollar and Steif (1988), the
predictions of perfect bonding and a Coulomb friction model approach one another as the
friction cocflicicnt becomes very large.] Here, the CSSA is in fair agreement with the
Coulomb {riction results,

Finally, we provide an additional means of gauging the accuracy of the approach that
we have taken to model the infinite array of fibers. By consideration of the stress intensity
factors for the perfectly bonded problems, it was shown above that our method yiclds
results that arc a few percent different from the exact result for an infinite line of cracks, at
least for typical fiber volume fractions. This gives confidence to our predictions for the
stress concentration at the crack tip when slippage occurs. In Fig. 13, we compare the load
transfer rates for these two perfectly bonded problems. The agreement between them is
quite good when the fibers are relatively far apart, consistent with the original justification
offered above for our approach. Even with typical fiber volume fractions (b/a = 2.0). the
solutions are similar near the matrix crack ; substantial deviations are evident further from
the matrix crack. It is more difficult to say anything certain about the accuracy of the
solution once slip occurs. However, the agreement between the CSSA and our results leads
one to have some faith in the load transfer results, at least near the matrix crack.
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APPENDIX

In this Appendix we give expressions for the terms in the dimensionless version of eqn (16). Spatial variables
have been non-dimensionalized by a. stresses by g, or P 2a as appropriate, and the dislocation intensity 5(y,) by
Prix + 1)/(2Ga) or ¢ n(x + 1)/G as appropriate.

Ry(y.vp) = =
¥y—Je

R +h; . R +h}
i, IR

R (3.3} =2Im [h3]+lm[ } +2y Re[H'{z.2,)]

R+hi hi+h;
Ry(royg) = —Re| XM LA o I [H7(2, 20)] - 2 Re [H(. 20)]
I k,
where
1 1 1
= k -3 N =—“—'—*'
he T3 YT v h s+ 3

L 2 -1 ] 2 [_ H-1 ]
”"“""mzw.\r(znn’[ *Xoxe | Y e —Yeor L Xevea)
The function f{y) is written as

JO) = L[1(0+u/2(3)

where
0 -2 1 s
Sy = oy im|

2 i H 7y
fi(y) = ;{—Im [m] +y Re [[—‘—-—“x(:)l‘]} - Fﬁ;.

for the pull-out problem (b — ) and
S = =2 Relpi(2)]

6!’
1200 = ZRe (i) -y Im b5l - -~

for the case of finite b. The function ¢y is given by eqn (3).



